Quien cree estar de vuelta de todo es que nunca ha ido a ninguna parte

Antibióticos para la vida

En un mundo sin antibióticos, ¿seguirías con vida?

La peste negra representada en la Biblia de Toggenburg.
La peste negra, aquí representada en la Biblia de Toggenburg (1411), mató a entre el 30% y el 60% de la población europea entre 1348 y 1350 y no desapareció hasta el siglo XVIII, cuando se vio sustituida por el cólera (mi bisabuela aún recordaba la espantosa epidemia de cólera de Valencia de 1885). Ninguna de estas enfermedades habría representado un gran problema teniendo antibióticos. Pero no teníamos.

Amoxicilina
La amoxicilina, uno de los antibióticos más utilizados en la actualidad, sigue siendo una penicilina betalactámica semisintética.

Hace poco escribí un post sobre el abuso de los antibióticos y los problemas de salud pública que está ocasionando en todo el mundo por el surgimiento de cepas resistentes y demás. Sin embargo, no disponer de ellos sería... bueno, espantoso, otra de esas cosas que nos mantendrían atados a un pasado de mierda. Los antibióticos, además de imprescindibles para la medicina moderna, son fascinantes: sustancias asombrosas capaces de matar a los agentes causantes de las enfermedades... sin matarnos a nosotros, cosa más extraordinaria de lo que nos hemos ya acostumbrado a pensar.
Hoy por hoy, en general, al menos los antibióticos sencillos se pueden encontrar hasta en los peores pudrideros del Tercer Mundo; y en los países desarrollados, los médicos disponen de un impresionante arsenal farmacológico para atacar a las enfermedades infecciosas ocasionadas por bacterias. Que son buena parte de las que nos liquidaban como a chinches hasta tiempos bien recientes, y cuando no, nos arruinaban la vida de mala manera. Entre ellas, bromitas como la peste bubónica, la difteria, el cólera, la lepra, la sífilis o la tuberculosis; por no mencionar todas esas infecciones que hoy en día consideramos leves pero que en el pasado tenían la costumbre de llevarse a la chiquillería y también a sus mamás al otro barrio por oleadas.
Los antibióticos carecen de utilidad contra los virus, a pesar de la afición del personal a atizárselos para tratar el resfriado común, la gripe y cosas así. Y el tratamiento de las enfermedades ocasionadas por hongos es cosa de los antifúngicos. Los antibióticos sólo sirven para curarnos de los males que causan las bacterias patógenas, ¡pero de qué manera! A menos que nos enfrentemos a una de esas cepas multirresistentes que han evolucionado a consecuencia de su abuso y mal uso, suelen ser mano de santo, curando en pocos días enfermedades que a menudo nos enviaban a la tumba o a la invalidez por muchas manos de santo auténticas que nos impusieran.
Los tres dominios de la vida: archaeas, bacterias y eucariontes.
Los tres dominios de la vida: archaeas, bacterias y eucariontes. Nosotros pertenecemos a un tipo de eucariontes, los animales (arriba a la derecha).

Del casi infinito dominio de las bacterias.
En este planeta, las bacterias contienen casi tanta biomasa como las plantas y las procariotas en general (el inmenso reino al que pertenecen) forman más de la mitad de la materia viva terrestre. De hecho, en la actualidad, esto de los reinos ya no se lleva mucho. Los biólogos se han hecho, digamos, pelín republicanos desde que descubrieron que la clara mayoría democrática de todas las cosas vivas que medramos sobre la faz de este mundo viejo son las bacterias y las archaeas; y también fueron las primeras en llegar, por algún millar de millones de años, con lo que el derecho de sangre les corresponde sin duda ninguna. Así pues, ahora dividimos a las cosas que viven en tres dominios: archaeas, bacterias y eucariontes; dentro de esos dominios, ya puede haber reinos y pequeñeces así. Los eucariontes somos el batiburrillo de lo que no son bacterias o archaeas, las cosas que poseen núcleo celular verdadero y que va desde los hongos hasta animales mamíferos como el homo sapiens. (Véase: Esta es tu herencia en este mismo blog)
Las procariotas son absolutamente esenciales para la vida terrestre. Si mañana la humanidad se extinguiese, incluso si todos los primates nos extinguiéramos, nadie notaría gran cosa y sería un incidente absolutamente menor en la historia de la vida; algo surgió, luego desapareció, ninguna novedad. Pero si las procariotas se extinguiesen, toda la vida terrestre se pondría del revés y probablemente desaparecería. Eso sí, la clase de cosa necesaria para matarlas pertenece a la liga de los grandes impactos planetarios y las estrellas agónicas zampándose mundos entre fases de fusión; un súper-meteorito de tres al cuarto o una escalera siberiana del montón no les hacen ni reir.
Se estima que hay aproximadamente 5 · 1030 bacterias en la Tierra. O sea, un cinco seguido de treinta ceros, lo que vienen siendo cinco quintillones. Es decir, más de un trillón de bacterias por cada galaxia del universo observable. Quinientos mil millones por cada insecto, más de quinientos mil millones por cada puñetero grano de arena en las playas de este mundo. Es difícil encontrar cifras a escala humana tan inmensas como para comparar. Una jartá, oiga.
E. coli
Tenemos más bacilos E. coli como los de la imagen en el colon intestinal que células en el conjunto del cuerpo. E. coli es un comensal generalmente inocuo, aunque algunas cepas son muy peligrosas.

A diferencia de lo que ocurre con las archaeas, que pasan señorialmente del resto de las cosas vivas desde su enigmático dominio primordial (si bien llevamos algunas en el intestino, las metanógenas), una parte significativa de las bacterias interaccionan con animales como nosotros y hasta pueden ocasionarnos enfermedades: decimos entonces que son patógenas. Esto es un temita peliagudo, dado que en un cuerpo humano hay diez veces más bacterias que células nativas propias y necesitamos la mayor parte de ellas para seguir bien de salud. Con estas cifras en la mano, no sería totalmente abusivo afirmar que somos básicamente una colonia de bacterias fecales rodeadas por unas capas celulares para asegurar su alimentación. Desde el corazón de nuestro culo, cien billones de bacterias preguntan a diez billones de células eucariotas quién es aquí el simbionte de quién. 😉 El Proyecto Microbioma Humano estudia esta materia con gran afán, entre otras cosas de peculiar interés.
Bacterias enrolladas y bacterias chungas.
Aunque llevamos bacterias por todas partes y especialmente en los ojos, la piel, la nariz, la boca, la vagina y el intestino delgado, la mayor parte se encuentran en el intestino grueso y sobre todo en el colon; donde reside, por ejemplo, la conocida vecina E. coli. Escherichia coli vive ahí de nuestro culo para arriba tranquilamente, respetuosa de la ley y sin dar pie a muchas habladurías, alimentándose de... pues de qué va a ser, de la mierda, facilitándonos la absorción de nutrientes en el proceso. Es una buena chica, muy trabajadora y fiel, que nos coloniza unas 48 horas después del nacimiento y ya no nos abandona hasta que nos hemos convertido en contaminación ambiental. Incluso sirve para elaborar medicamentos contra las enfermedades inflamatorias intestinales.
Pero no todas las E. coli son igual de dóciles y laboriosas. Algunas cepas resultan francamente peligrosas, entre ellas O157:H7, O121 u O104:H21, que producen potentes toxinas y son causa habitual de intoxicaciones alimentarias. Cuando nos pegamos un banquete de estas cepas, normalmente acompañado con algo de comer, nos ponemos muy malitos e incluso nos podemos morir –una parte de las toxinas que fabrican se parecen bastante a las del cólera–. Tampoco nos sienta bien que la E. coli buena se salga de su sitio y vaya a parar a otros lugares, como por ejemplo mediante una herida abdominal: provoca rápidamente peritonitis, que también nos puede enviar fácilmente al lugar silencioso. En la actualidad, hay verdadero miedo a que E. coli haya adquirido multirresistencia por el abuso de antibióticos y no se pueda controlar en estos casos.
Otras bacterias son directamente unas hideputas que vienen a buscarnos las vueltas, diciendo que necesitan sobrevivir a nuestra costa y que más vale que llore tu madre que no la mía. Entre estas se encuentran algunas tipas tan chungas como Vibrio cholerae (cólera), Yersinia pestis (peste bubónica, que una vez se cargó a media Europa), Mycobacterium leprae (o bacilo de Hansen, encargado de llenar las leproserías), Mycobacterium tuberculosis (o bacilo de Koch, tisis) o Treponema pallidum, esa guarrindonga que acecha el día en que te dejaste los condones en casa y suele ingeniárselas para encontrar un camino de tu entrepierna a tu cerebro (cosa que probablemente no sea muy difícil 😛 ).
Treponema pallidum, el agente causante de la sífilis.
Treponema pallidum, el agente causante de la sífilis, una enfermedad de transmisión sexual que por sí sola justifica el uso de todos los condones del mundo.

He citado cinco de las más conocidas, pero en realidad hay miles de especies bacterianas patógenas, que se contagian por tierra, agua, aire y polvo (sí, en el sentido que estás pensando). No existe prácticamente ningún orden de la realidad en la superficie terrestre donde no haya bacterias, y eso incluye a las patógenas.
Por ello, la higiene y la asepsia (y en su caso la antisepsia) son importantísimas, la primera barrera y la más esencial contra las enfermedades infecciosas (aunque existen indicios para pensar que la excesiva higiene puede ser contraproducente, al impedir que el sistema inmunológico de los niños se desarrolle correctamente y fomentar la resistencia microbiana –pero sin exagerar–). Uno de los más grandes éxitos a la hora de evitar que las mamás se murieran como ratas de sepsis puerperal fue lograr que los médicos y obstetras se lavaran las puñeteras manos antes de atender el parto. Con la asepsia quirúrgica se logra erradicar casi todas las bacterias que puedan llegar al paciente en un quirófano, siempre que se siga escrupulosamente el procedimiento.
La guerra entre las bacterias, los hongos y los humanos.
Una vez la infección se ha producido, sólo existen dos maneras de enfrentarla. La primera es dejar que el sistema inmunológico haga su trabajo para eliminarla, como de hecho hace constantemente. Sin embargo, es evidente que numerosas infecciones son capaces de vencer al sistema inmunológico y comérsenos; algunas resultan tan peligrosas que ni siquiera merece la pena correr el riesgo de esperar a que el sistema inmunitario haga lo suyo. En realidad hay una tercera posibilidad: amputar el miembro u ógano infectado... con la esperanza de que eso no empeore las cosas aún más. Por eso antiguamente las amputaciones iban que volaban, mientras hoy en día se reservan para casos extremos.
En el pasado, al llegar a este punto en el que quedamos infectados por algo que el sistema inmunitario no puede afrontar... pues la liamos parda. Durante la mayor parte de la historia de la humanidad, no existió ningún mecanismo claro o eficaz para combatir la infección desde fuera. Esencialmente, o tu sistema inmunológico lograba vencerla, o te amputaban a tiempo sin causarte una infección aún mayor o te ibas para el hoyo –y esto ocurría con gran frecuencia–. Hasta finales del siglo XIX no hubo realmente medicamentos dignos de tal nombre, y ese es uno de los motivos fundamentales de que hasta principios del XX la esperanza de vida incluso en los países ricos se mantuviera sólidamente por debajo de los 50 años, y la media mundial fuera de 31 años, peor que en el Paleolítico (cuando se estima que fue de 33 años). Hoy en día los países que peor están rondan los 40 años (Swazilandia), aunque cifras en torno a los 50 son más comunes en el África pobre; la media mundial en 2005 fue de 67,2 años, algo nunca visto, y los países desarrollados nos mantenemos sólidamente en torno a los 75 - 80. La diferencia entre países ricos y pobres se ha reducido de 25 años en 1950 a 11,5 en la actualidad. En apenas un siglo, hemos logrado entre un 29% (caso peor) y un 162% (caso mejor) de vida extra para el conjunto de la humanidad.
Mortalidad infantil y esperanza de vida 1950-2010
Mortalidad infantil y esperanza de vida 1950-2010, con desglose del total mundial y los países más y menos desarrollados. Fuente: División de población de las Naciones Unidas (http://esa.un.org/unpp/index.asp?panel=2). (Clic para ampliar)

Funeral del primogénito, por Nikolai Yaroshenko, 1893
Funeral del primogénito, por Nikolai Yaroshenko, 1893. La experiencia de enterrar a un hijo pequeño, hoy en día poco común y generalmente consecuencia de la fatalidad, era cosa corriente en todo el mundo hasta la segunda mitad del siglo XX.

Las cifras de mortalidad infantil han mejorado aún mucho más. Durante la mayor parte de la historia se encontraba en el 30% y a veces ascendía hasta el 50%. Es decir, entre uno de cada tres y uno de cada dos nacidos desaparecía antes de alcanzar la edad adulta. Hoy, el peor país para venir al mundo es Angola (18,2%, una barbaridad) y el mejor, Singapur (0,2%); la media mundial está en el 4 a 5%. Tan solo en 1950, la media mundial rondaba aún el 15% (tan mala como si todo el mundo fuera el Afganistán de hoy). Eso es una reducción global del 70% en apenas sesenta años. De nuevo, la diferencia entre ricos y pobres ha caído de 115 puntos a principios de los '50 a 46 hoy en día. Y en su gran mayoría, es la obra de la ciencia moderna (y también de la mentalidad moderna).
Entre los conocimientos, métodos y técnicas que han logrado este resultado maravilloso se encuentran las vacunas, la higiene y los antibióticos. En el mundo clásico protocientífico existieron algunos a modo de antibióticos, que parece que mejoraban algo las cosas. Diversas culturas de la Antigüedad descubrieron que aplicando ciertos mohos y plantas a las heridas la infección se reducía. En mundo rural ruso, es tradicional tratar las heridas infectadas con trozos de tierra caliente (que contiene mohos), y en Serbia y Grecia, usando trozos de pan florecido. Pero eso fue todo y, a todas luces, no fue lo suficiente. Tuvimos que esperar hasta 1875 para que un médico irlandés, por nombre John Tyndall, verificara una cosita curiosa descubierta poco tiempo atrás: algunas bacterias parecían tener problemas para cultivarse allá donde medraba un cierto hongo de los alimentos estropeados llamado Penicillium. En 1876, dejaría escrito: "donde el [Penicillium] es sólido y coherente, las bacterias murieron o se adormecieron y cayeron al fondo [del tubo de ensayo] como un sedimento". Lamentablemente, así quedó la cosa por el momento.
En 1877, Louis Pasteur y Robert Kochnadie, vamos– observaron también que un hongo presente en el aire inhibía el crecimiento del carbunco ("ántrax") durante sus estudios refutando la generación espontánea para demostrar la Teoría Microbiana de la Enfermedad. El francés comentó: "si pudiéramos intervenir en el antagonismo observado entre algunas bacterias, se podría quizás ofrecer las mayores esperanzas en materia terapéutica". Pero si hay que mencionar un nombre como inventor de la farmacología quimioterapéutica moderna y de los antibióticos eficaces, tal nombre es el del alemán Paul Ehrlich.
Paul Ehrlich, padre del primer antibiótico eficaz.
Paul Ehrlich, premio Nobel y padre del primer antibiótico eficaz: el Salvarsán de 1909, contra la sífilis. Fue virulentamente atacado como "peón del diablo" (Wick, 1988), por interponerse en el "castigo divino a la promiscuidad".

La bala mágica del doctor Ehrlich.
Entre otras cosas, Ehrlich era un destacado histólogo especializado en el uso de tintes para teñir selectivamente diversos tejidos y microorganismos, que inventó varias de las técnicas precursoras a la tinción de Gram. También postulaba que las toxinas y antitoxinas eran agentes químicos, no muy distintos de algunos de estos tintes. Esto le condujo a elaborar una idea singular: al igual que ciertos tintes teñían únicamente un tipo de células o microorganismos, al igual que las antitoxinas van a buscarles las vueltas a las toxinas, debían existir sustancias tóxicas sólo para un tipo de células o microorganismos, que no causasen daños a las demás. Así, sería posible inyectar esta sustancia tóxica a un paciente de tal modo que matara a la enfermedad sin matar al enfermo. Y lo expresó así: "debemos aprender a disparar a los microbios con balas mágicas". Una bala mágica que se cargara al microorganismo patógeno sin tocar a su portador.
Cuando en 1899 Ehrlich fue nombrado director del Instituto Real de Terapias Experimentales en Fráncfort, se dedicó a investigar estas hipotéticas balas mágicas con gran afán. A lo largo de cientos de experimentos, él y su equipo terminaron concentrándose en una familia de compuestos arsénicos trivalentes que habían demostrado su efectividad contra los tripanosomas. No mucho después Schaudinn y Hoffman descubrieron que la Treponema pallidum, una bacteria espiroqueta, era la causante de la temida enfermedad de transmisión sexual conocida como sífilis. Ehrlich consideró que la Treponema constituía un blanco idóneo para sus balas mágicas, y el mismo año en que recibía el Premio Nobel por sus trabajos sobre la inmunidad, pidió a su discípulo japonés Sahachirō Hata –autor de una técnica para infectar la sífilis en los conejos– que probara a destruirla con una sustancia previamente descartada: el compuesto 606 (porque era el sexto compuesto del sexto grupo de compuestos arsénicos que habían probado).
Así, siendo 1909, el doctor Sahachirō Hata probó el compuesto 606 para destruir la sífilis en conejos, siguiendo las instrucciones del doctor Paul Ehrlich de Fráncfort. Y el compuesto 606 funcionó.
Por primera vez, la humanidad disponía de un veneno capaz de matar a la enfermedad sin matar al enfermo. Fue bautizado como arsfenamina y comercializado bajo la marca Salvarsán. Al poco, en 1912, comenzaron a distribuir un nuevo compuesto ligeramente menos eficaz pero con mejor comportamiento clínico denominado Neosalvarsán. Ambos son profármacos, es decir, sustancias poco activas que el propio organismo metaboliza para convertirlas en activas. Y la sífilis, que había arruinado millones de vidas, se comenzó a curar.
Los de siempre montaron en cólera. La iglesia, los políticos conservadores e incluso una parte de sus colegas llamaron de todo a aquel judío que había osado interponer la mano protectora de la ciencia entre la humanidad y el justo castigo por el pecado de promiscuidad. Fue tachado de peón del diablo (Wick MD, M.R.. Retrospective-Paul Ehrlich: The Prototypic Clinical Pathologist. Am J Clin Pathol. 90:329-332 , 1988), vituperado, vilipendiado, acosado e incluso demandado en los tribunales por asesinato (como cualquier otro medicamento primitivo, el Salvarsán tenía fuertes efectos secundarios y unos cuarenta pacientes murieron, pero miles y miles se salvaban). Ehrlich acusó muy mal estos ataques y se dice que eso tuvo bastante que ver en los dos accidentes cerebrovasculares que le costaron la muerte durante el verano de 1915, a los 61 años de edad. Hay una peli de 1940 sobre todo esto, La bala mágica del doctor Ehrlich.
A pesar de los canallas, la razón se impuso y el Salvarsán se convirtió en el medicamento más vendido del mundo durante los siguientes treinta años. En 1935, Bayer desarrolló un tinte antibiótico llamado Prontosil, siguiendo técnicas basadas en las de Ehrlich; se trataba de la primera sulfamida y el primer antibiótico de amplio espectro. Es decir, un perdigonazo mágico: los antibióticos de amplio espectro son capaces de atacar a una diversidad de microorganismos sin causar daños significativos al paciente.  Las sulfamidas fueron el antibiótico más utilizado durante la Segunda Guerra Mundial, salvando a miles de soldados y otras víctimas de la enfermedad y la guerra. Pero lo mejor aún estaba por llegar.
Sir Alexander Fleming recogiendo el premio Nobel.
Sir Alexander Fleming (izda.) recogiendo el premio Nobel de manos del rey de Suecia Gustav V (1945).

Penicilina.
Según sus propias palabras, cuando el doctor Alexander Fleming se levantó de la cama el 28 de septiembre de 1928, no había decidido revolucionar toda la medicina de la humanidad para la hora de la cena. Y sin embargo, eso fue lo que ocurrió.
Alexander Fleming era un biólogo y farmacéutico escocés muy tímido y observador, al que cuando algo le picaba, no paraba hasta rascárselo. Así había descubierto ya la lisozima unos años atrás, importante en los procesos gangrenosos. Estuvo de vacaciones con la familia durante el mes de agosto de 1928 y volvió a su laboratorio el 3 de septiembre. Al revisar unos cultivos de estafilococos que estaba estudiando y dejó almacenados antes de irse, constató que una de las cepas estaba contaminada por un hongo. Alrededor del hongo, todos los estafilococos estaban muertos. Al comentárselo a su ayudante, éste contestó: "Así es como descubriste la lisozima, ¿no?"
Fleming estudió el hongo con atención, que resultó ser aquel Penicillum cuya capacidad bactericida ya había quedado establecida por Tyndall en 1875. Y se picó, y quiso rascarse. Así que se puso a hacer más experimentos. El 7 de marzo de 1929, puso nombre al jugo de moho con el que había estado trabajando todos esos meses: lo llamó penicilina. Y esta penicilina resultó ser la bala mágica soñada por el doctor Ehrlich, capaz de matar a decenas de bacterias patógenas peligrosísimas con una mínima toxicidad para el paciente.
El éxito no vino de inmediato. Su hallazgo recibió poca atención, pues no parecía aportar gran cosa sobre el trabajo de Tyndell cincuenta años atrás, y la producción en masa de esta penicilina resultó ser más difícil de lo que parecía en un principio. Trató de encontrar a un químico que la produjera, pero el sector privado no se interesó y a las universidades les parecía poco prometedor. Con el paso del tiempo, surgieron más problemas: el propio Fleming llegó a la conclusión de que la penicilina duraba demasiado poco tiempo en el organismo para actuar eficazmente, y además actuaba demasiado despacio. Hacia finales de los años '30, se había desanimado y ya sólo le prestaba alguna atención ocasional.
El hongo Penicillium, que produce la penicilina, creciendo en agar.
El hongo Penicillium, que produce la penicilina, creciendo en agar.

En 1940, poco después de que comenzara la Segunda Guerra Mundial, Ernst Chain y Edward Abraham de la Universidad de Oxford descubrieron la estructura química exacta de la penicilina y hallaron un modo de aislarla y purificarla. No era más que un oscuro paper bioquímico sin ninguna aplicación clara en ese momento, pero en cuanto Fleming lo leyó se le hizo la luz de nuevo y llamó por teléfono a Howard Florey, que era el jefe del departamento donde trabajaban Chain y Abraham. Dicen que al colgar el teléfono, se oyó susurrar a Florey, refiriéndose a Fleming: "Dios... creía que el tipo estaba muerto". Sobre otra idea de Norman Heatley, Florey y Chain encontraron la manera de producir esta penicilina en masa.
Así, lo que solamente era una curiosidad científica se transformó rápidamente en una gran industria. El nuevo fármaco, que inició su andadura como penicilina G o bencilpenicilina, resultó ser de excepcional eficacia y bajísima toxicidad para el tratamiento y prevención de la gonorrea, la sífilis (desplazando finalmente al Salvarsán), la meningitis, la neumonía, la sepsis infantil, el tétanos, la gangrena y casi toda clase de infecciones producidas por heridas. Con la Segunda Guerra Mundial en marcha, no faltaban heridas de todas clases, y en 1944 ya se estaba produciendo penicilina suficiente para atender a todos los ejércitos aliados occidentales. Fleming, Florey y Chain recibieron el premio Nobel de medicina en 1945.
La penicilina tiene una bajísima toxicidad, pero en un 10% de los pacientes puede producir alergias y en ocasiones la muerte por shock anafiláctico. Descontando este problema, durante décadas no tuvo parangón y surgieron un montón de variantes mejores para esto o aquello, conocidas genéricamente como penicilinas. A partir de los años '70 surgieron las penicilinas sintéticas, producidas de manera completamente artificial (o sea, sin tener que andar trasteando con los hongos), que permiten una diversidad de fórmulas mayor. En la actualidad, los antibióticos primarios siguen siendo penicilinas, como la amoxicilina o la cloxacilina. Una alternativa a las penicilinas, que sigue el mismo principio pero se origina en un hongo de las alcantarillas sardas, son las cefalosporinas.
En décadas recientes han surgido nuevos antibióticos totalmente sintéticos como las quinolonas (bastante más tóxicas), las tetraciclinas y algunas otras. En general, ninguno de estos antibióticos resulta tan eficaz como las penicilinas/cefalosporinas y buena parte presentan muchos más efectos secundarios. Como comentábamos al principio, en la actualidad el problema ya no es tanto matar bichejos chungos como pasarnos de vueltas y provocar la evolución sistemática de cepas resistentes a los antibióticos. Porque eso significaría volver al pasado, a aquella época que algunos creen más feliz pero donde las tasas de mortalidad infantil eran de dos dígitos, la esperanza de vida  menor que cincuenta años y cualquier microcabrito nos podía mandar al otro barrio con facilidad; un fenómeno que ya ha empezado a ocurrir y debemos evitar.

Ver también: Viruela: cuando la mano del Hombre fue más poderosa que el puño de Dios